Porous spherical carbon/sulfur nanocomposites by aerosol-assisted synthesis: the effect of pore structure and morphology on their electrochemical performance as lithium/sulfur battery cathodes.
نویسندگان
چکیده
Porous spherical carbons (PSCs) with tunable pore structure (pore volume, pore size, and surface area) were prepared by an aerosol-assisted process. PSC/sulfur composites (PSC/S, S: ca.59 wt %) were then made and characterized as cathodes in lithium/sulfur batteries. The relationships between the electrochemical performance of PSC/S composites and their pore structure and particle morphology were systematically investigated. PSC/S composite cathodes with large pore volume (>2.81 cm(3)/g) and pore size (>5.10 nm) were found to exhibit superior electrochemical performance, likely due to better mass transport in the cathode. In addition, compared with irregularly shaped carbon/sulfur composite, the spherical shaped PSC/S composite showed better performance due to better electrical contact among the particles.
منابع مشابه
Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries
The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like stru...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملSynthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications
One-dimensional molybdenum dioxide-carbon nanofibers (MoO2-CNFs) were prepared using an electrospinning technique followed by calcination, using sol-gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmet-Teller (BET) surface area measur...
متن کاملBiomass Derived Nitrogen-Doped Highly Porous Carbon Material with a Hierarchical Porous Structure for High-Performance Lithium/Sulfur Batteries
A novel nitrogen doped mesoporous carbon (NMPC) with a hierarchical porous structure is prepared by simple carbonizing the green algae, which is applied as a host material to encapsulate sulfur for lithium/sulfur (Li/S) battery. The NMPC exhibits high pore volume as well as large specific surface area, and thus sulfur content in the S/NMPC composite reaches up to 63 wt %. When tested in a Li/S ...
متن کاملBiomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries
In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC) is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries' appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2014